
Direct Style Scala

Martin Odersky
EPFL

Scalar Conference
March 24, 2023

Shifting Foundations

Trends

Widespread support for async/await
Runtimes get better support for fibers or continuations.

Examples

Goroutines,
Project Loom in Java,
Kotlin coroutines,
OCaml or Haskell delimited continuations,
Research languages such as Effekt, Koka

Thesis of this talk

This will deeply influence libraries and frameworks
It’s very attractive now to go back to direct style.

Shifting Foundations

Trends

Widespread support for async/await
Runtimes get better support for fibers or continuations.

Examples

Goroutines,
Project Loom in Java,
Kotlin coroutines,
OCaml or Haskell delimited continuations,
Research languages such as Effekt, Koka

Thesis of this talk

This will deeply influence libraries and frameworks
It’s very attractive now to go back to direct style.

How will this influence Scala in the future?

1 There will likely be native foundations for direct-style reactive
programming

Delimited continuations on Scala Native
Fibers on latest Java
Source or bytecode rewriting for older Java, JS

2 This will enable new techniques for designing and composing
software

3 There will be a move away from monads as the primary way
of code composition.

Building a Direct-Style Stack

First step: Boundary/break

Error handling

Suspensions

Concurrency library design built on that

Building a Direct-Style Stack

First step: Boundary/break
(shipped)

Error handling
(enabled)

Suspensions
(wip)

Concurrency library design built on that
(wip)

Warmup: Boundary/break

A cleaner alternative to non-local returns (which will go away)

def firstIndex[T](xs: List[T], elem: T): Int =

boundary:

for (x, i) <- xs.zipWithIndex do

if x == elem then break(i)

-1

boundary establishes a boundary
break returns with a value from it.

Stack View

API

package scala.util

object boundary:

final class Label[-T]

def break[T](value: T)(using label: Label[T]): Nothing =

throw Break(label, value)

inline def apply[T](inline body: Label[T] ?=> T): T = ...

end boundary

To break, you need a label that represents the boundary.
In a sense, label is a capability that enables to break.
(This is a common pattern)

Implementation

The implementation of break produces efficient code.

If break appears in the same stackframe as its boundary, use a
jump.
Otherwise use a fast exception that does not capture a stack
trace.

A stack trace is not needed since we know the exception will be
handled (*)

(*) To be 100% sure, this needs capture checking.

Implementation

The implementation of break produces efficient code.

If break appears in the same stackframe as its boundary, use a
jump.
Otherwise use a fast exception that does not capture a stack
trace.

A stack trace is not needed since we know the exception will be
handled (*)

(*) To be 100% sure, this needs capture checking.

Stage 2: Error handling

boundary/break can be used as the basis for flexible error handling.
For instance:

def firstColumn[T](xss: List[List[T]]): Option[List[T]] =

optional:

xss.map(_.headOption.?)

Optionally, returns the first column of the matrix xss.
Returns None if there is an empty row.

Error handling implementation

optional and ? on options can be implemented quite easily on top
of boundary/break:

object optional:

inline def apply[T](inline body: Label[None.type] ?=> T)

: Option[T] = boundary(Some(body))

extension [T](r: Option[T])

inline def ? (using label: Label[None.type]): T = r match

case Some(x) => x

case None => break(None)

Analogous implementations are possible for other result types such
as Either or a Rust-like Result.
My ideal way of error handling would be based on Result + ?.

Stage 3: Suspensions

Question: What if we could store the stack segment between a
break and its boundary and re-use it at some later time?

Suspensions

Question: What if we could store the stack segment between a
break and its boundary and re-use it at some later time?

This is the idea of delimited continuations.

Suspensions

Question: What if we could store the stack segment between a
break and its boundary and re-use it at some later time?

This is the idea of delimited continuations.

Suspension API

class Suspension[-T, +R]:

def resume(arg: T): R = ???

def suspend[T, R](body: Suspension[T, R] => R)(using Label[R]): T

Suspensions are quite powerful.
They can express at the same time algebraic effects and monads.

Generators

Python-style generators are a simple example of algebraic effects.

def example = Generator:

produce(”We’ll give you all the numbers divisible by 3 or 2”)

for i <- 1 to 1000 do

if i % 3 == 0 then

produce(s”$i is divisible by 3”)

else if i % 2 == 0 then

produce(s”$i is even”)

Here, Generator is essentially a simplified Iterator

trait Generator[T]:

def nextOption: Option[T]

Algebraic Effects

Task: Build a generate implementation of Generator, so that one
can compute the leafs of a Tree like this:

enum Tree[T]:

case Leaf(x: T)

case Inner(xs: List[Tree[T]])

def leafs[T](t: Tree[T]): Generator[T] =

generate: // effect scope

def recur(t: Tree[T]): Unit = t match

case Tree.Leaf(x) => produce(x) // effect

case Tree.Inner(xs) => xs.foreach(recur)

recur(t)

Generator Implementation

trait Produce[-T]:

def produce(x: T): Unit

def generate[T](body: Produce[T] ?=> Unit) = new Generator[T]:

def nextOption: Option[T] = step()

var step: () => Option[T] =

The Step Function

trait Produce[-T]: // effect type

def produce(x: T): Unit

def generate[T](body: Produce[T] ?=> Unit) = new Generator[T]:

def nextOption: Option[T] = step()

var step: () => Option[T] = () =>

boundary:

given Produce[T] with // handler

def produce(x: T): Unit =

suspend[Unit, Option[T]]: k =>

step = () => k.resume(())

Some(x)

body

None

Summary: Algebraic Effects

Effects are methods of effect traits
Handlers are implementations of effect traits

They are passed as implicit parameters.
They can abort part of a computation via break
They can also suspend part of a computation as a
continuation and resume it later.

Implementing Suspensions

There are several possibilities:

Directly in the runtime, as shown in the designs
On top of fibers (requires some compromises)
By bytecode rewriting (e.g. Quasar, javactrl)
By source rewriting

Suspensions and Monads:

Wadler (1993): Continuations can be expressed as a monad.
“Haskell is the essence of ML”

Filinski (1994): Every monad can be expressed in direct style
using just delimited continuations.

“ML is the essence of Haskell”

My take: designs based on continuations are simpler to compose
than monads.

Suspensions and Monads:

Wadler (1993): Continuations can be expressed as a monad.
“Haskell is the essence of ML”

Filinski (1994): Every monad can be expressed in direct style
using just delimited continuations.

“ML is the essence of Haskell”

My take: designs based on continuations are simpler to compose
than monads.

Direct-Style Futures

With suspend(*), we can implement lightweight and universal
await construct that can be called anywhere.
This can express simple, direct-style futures.

val sum = Future:

val f1 = Future(c1.read)

val f2 = Future(c2.read)

f1.value + f2.value

Structured concurrency: Local futures f1 and f2 complete before
sum completes. This might mean that one of them is cancelled if
the other returns with a failure.
(*) Loom-like fibers would work as well.

Compare with Status Quo

val sum =

val f1 = Future(c1.read)

val f2 = Future(c2.read)

for

x <- f1

y <- f2

yield x + y

Composition of futures is monadic
but creation isn’t, which is a bit awkward.

A Strawman

lampepfl/async is an early stage prototype of a modern, low-level
concurrency library in direct style.
Main elements

Futures: the primary active elements
Channels: the primary passive elements
Async Sources Futures and Channels both implement a new
fundamental abstraction: an asynchronous source.
Async Contexts An async context is a capability that allows
a computation to suspend while waiting for the result of an
async source.

Link: github.com/lampepfl/async

Futures

The Future trait is defined as follows:

trait Future[+T] extends Async.Source[Try[T]], Cancellable:

def result(using Async): Try[T]

def value(using Async): T = result.get

The result method can be defined like this:

def result(using async: Async): T = async.await(this)

async is a capability that allows to suspend in an await method.

Futures

The Future trait is defined as follows:

trait Future[+T] extends Async.Source[Try[T]], Cancellable:

def result(using Async): Try[T]

def value(using Async): T = result.get

The result method can be defined like this:

def result(using async: Async): T = async.await(this)

async is a capability that allows to suspend in an await method.

Async

The Async trait is defined as follows:

trait Async:

def await[T](src: Async.Source[T]): T

def scheduler: ExecutionContext

def group: CancellationGroup

def withGroup(group: CancellationGroup): Async

await gets the (first) element of an Async.Source.
It suspends if necessary.

Async.Source

Futures are a particular kind of an async source. (Other
implementations come from channels).
Async sources are the primary means of communication
between asynchronous computations
They can be composed in interesting ways.

For instance, map and filter are provided:

extension [T](s: Source[T])

def map[U](f: T => U): Source[U]

def filter(p: T => Boolean): Source[T]

Async.Source

Futures are a particular kind of an async source. (Other
implementations come from channels).
Async sources are the primary means of communication
between asynchronous computations
They can be composed in interesting ways.

For instance, map and filter are provided:

extension [T](s: Source[T])

def map[U](f: T => U): Source[U]

def filter(p: T => Boolean): Source[T]

Races

A race passes on the first of several sources:

def race[T](sources: Source[T]*): Source[T]

Higher-level operation:

def either[T1, T2](src1: Source[T1], src2: Source[T2])

: Source[Either[T, U]] =

race(

src1.map(Left(_)),

src2.map(Right(_))

)

Structured Concurrency

It’s now easy to implement zip and alt on futures:

extension [T](f1: Future[T])

def zip[U](f2: Future[U])(using Async): Future[(T, U)] =

Future:

await(either(f1, f2)) match

case Left(Success(x1)) => (x1, f2.value)

case Right(Success(x2)) => (f1.value, x2)

case Left(Failure(ex)) => throw ex

case Right(Failure(ex)) => throw ex

Structured Concurrency

It’s now easy to implement zip and alt on futures:

extension [T](f1: Future[T])

def alt(f2: Future[T])(using Async): Future[T] =

Future:

await(either(f1, f2)) match

case Left(Success(x1)) => x1

case Right(Success(x2)) => x2

case Left(_: Failure[?]) => f2.value

case Right(_: Failure[?]) => f1.value

Why Futures & Channels?

Futures: The simplest way to get parallelism

Define a computation
Run it in parallel
Await the result when needed

Channels: The canonical way of communication between
computations.
Both are instances as asynchronous sources

Why not Coroutines?

Often, coroutines (in the sense of CSP or goroutines) are used
instead of futures to work with channels.
But:

We need to be able to wait for a coroutine’s termination.
We need to handle any exceptions in the coroutine on the
outside

Both are achieved by using a Future[Unit].
So no different abstractions are needed.

Why an ErrorType Fixed to Try?

Natural solution if the language supports exception
But common complaint for current futures:

Error type is fixed to be Exception.
This makes it awkward to handle other errors.

For instance, how would you implement this function?

def acrobatics(xs: List[Future[Result[T, E]]])

: Future[Result[List[T], E]] =

Why an ErrorType Fixed to Try?

Natural solution if the language supports exception
But common complaint for current futures:

Error type is fixed to be Exception.
This makes it awkward to handle other errors.

For instance, how would you implement this function?

def acrobatics(xs: List[Future[Result[T, E]]])

: Future[Result[List[T], E]] =

Why an ErrorType Fixed to Try?

Natural solution if the language supports exception
But common complaint for current futures:

Error type is fixed to be Exception.
This makes it awkward to handle other errors.

For instance, how would you implement this function?

def acrobatics(xs: List[Future[Result[T, E]]])

: Future[Result[List[T], E]] =

Why an ErrorType Fixed to Try?

Natural solution if the language supports exception
But common complaint for current futures:

Error type is fixed to be Exception.
This makes it awkward to handle other errors.

New direct style abstractions don’t have that problem anymore!

def acrobatics(xs: List[Future[Result[T, E]]])

: Future[Result[List[T], E]] =

Future:

Result:

xs.map(_.value.?)

Simple compositions, no traverse or lift is needed.

Conclusion

Direct style has lots to offer
Suspensions can express every monad, but, provide more flexible
composition.
This gives completely new possibilities to express practical
foundations for concurrency and async I/O.
The future will be interesting…

Thank You

Conclusion

Direct style has lots to offer
Suspensions can express every monad, but, provide more flexible
composition.
This gives completely new possibilities to express practical
foundations for concurrency and async I/O.
The future will be interesting…

Thank You

