
Summary of the project
Introduction
Direct style concurrency in Scala

The async library (https://github.com/lampepfl/async) is an attempt at cre-
ating a library providing direct style concurrency on Scala. It exists in a
similar space to ZIO (https://zio.dev/), Cats Effect (https://typelevel.org/cats-
effect/) and Cats (https://typelevel.org/cats/), although none of these attempt
direct style. A library also in the space and attempting direct style is Ox
(https://github.com/softwaremill/ox), however Ox only aspires to be a thin
wrapper around Project Loom and does not want to be a general Scala library.

The async library assumes some implementation of green threads / fibers /
coroutines and (in the future) continuations. One such implementation is project
Loom (details below).

The main goals of the library are

1. direct style,
2. structured concurrency, and
3. possibility of cancellation,
4. possibility of being used across different Scala runtimes.

Project Loom

The project focused on implementing and exploring the async library on the
project-Loom-enabled JVM.

Project Loom (https://openjdk.org/projects/loom/) is an ongoing initiative to
bring lightweight threads and related features to the Java runtime. Large part
of it is already implemented and available as preview features in JVM starting
from version 20. In order to utilize the new semantics one has to invoke the
JVM with additional VM parameter --enable-preview.

The core semantic changes of project Loom are

1. Introduction of virtual threads (Thread.startVirtualThread), and
2. making most non-blocking operations blocking instead.

It is expected that Project Loom will be available by default in future JVM
releases making relaying on it a future-proof choice.

While the work focused on implementation of the async library on the project-
Loom-enabled JVM, the async library is also expected to be ported to other
scala implementations, including Scala Native. Therefore, it is important not to
limit the design to only project Loom.

1



Source Semantics
This project focused mostly on futures and channels. The rest of the semantics
is explained in greater detail in the README.md.

Async.Source

Sources are objects that represent something that can be awaited (with the
await(Async.Source) method of trait Await). Sources directly expose a polling
interface and an interface to register and remove listeners.

def poll(k: Listener[T]): Boolean
def poll(): Option[T] // either return None if not done or Some(x) if x is ready

Polling represents an operation that ideally should complete almost immediately
without blocking on anything external and either not call the listener at all if the
source is not yet ready or, if it is ready, call it immediately with the ready value.

def onComplete(k: Listener[T]): Unit
def dropListener(k: Listener[T]): Unit

onComplete allows one to pass a callback listener that will be invoked once
the source is ready with some value. If the source is already ready when the
onComplete is invoked, the listener will be called immediately and not added to
the subscriber list. dropListener called with the same listener reference will
remove it from the subscriber list.

Listeners

Sources take listeners for poll() and addListener(). Listener of some value of
type T is just a funciont taking that value and returning a boolean.

trait Listener[-T] extends (T => Boolean)

Each listener has to obey the following contract:

1. either consume the value and signal it by returning true as quickly as
possible, or

2. determine that it is not interested in this value and return false as quickly
as possible.

This mechanism was invented so that filers and other readers which can condi-
tionally reject values do not consume the value despite rejecting it and deprive
other listeners of consuming it.

Async trait

Instances of trait Async provide

1. a concrete implementation of await(Async.Source[T]): T,
2. an ExecutionContext, and

2



3. a completion group previously called cancellation group (details in the
README.md).

In the project Loom version of the async library, execution context is never used.
This is because virtual threads on JVM are not open to many user-provided
settings, one cannot set their priority or change their scheduler type. Execution
context is preserved however for the purpose of it being used in other async
library implementations, like the Scala Native one.

The most common way to obtain an Async instance is to use an Async.blocking
block:

Async.blocking:
val f = Future { 10 }
Async.await(f)

When the execution of an Async.blocking block is done, it cancels all cancellable
instances created inside it.

Cancellable trait

This trait provides the ability to cancel execution:

def cancel()(using Async): Unit

Implementations of cancellable sources have to provide this implementation
by themselves and it usually involves shutting down pending actions/awaits,
cleaning up resources and notifying listeners about the cancellation.

For the details of completion/cancellation groups see REAMDE.md.

map and filter on Sources

def map[U](f: T => U): Source[U]
def filter(p: T => Boolean): Source[T]

One can create another source from a source by invoking a map or filter on
it. These operations work on a source and return a new source, which proxies
polling to the original source with the map/filter on top of values returned by
the original poll. This does not in any way destroy or consume the underlying
sources.

race and either on Sources

def race[T](sources: Source[T]*): Source[T]

Racing returns a new source that represents awaiting on the first completed
underlying source. This does not in any way destroy or consume the underlying
sources.

def either[T1, T2](src1: Source[T1], src2: Source[T2]): Source[Either[T1, T2]] =
race(src1.map(Left(_)), src2.map(Right(_)))

3



either is just a race which denotes which of the two sources was returned.

Future Semantics
Completable and runnable futures

trait Future[+T] extends Async.OriginalSource[Try[T]], Cancellable

A future is an abstraction of a computation that delivers result after
some time. A future as a source represents awaiting the result of the
thread’s computation wrapped in Success or some exception (possibly
java.util.concurrent.CancellationException) wrapped in Failure.

We distinguish completable (CoreFuture[T]) and runnable (RunnableFuture[T])
futures. Completable future’s final value is set by their complete() method.
Runnable future is essentially a function executed in a separate thread and the
function’s return value determines the future’s final value. Runnable futures are
the most common version and form the basis of most computations in the async
library.

// example of runnable futures
Async.blocking:

val f1 = Future { Thread.sleep(100); 10 }
val f2 = Future { Thread.sleep(200); 40 }
f1.value + f2.value

To obtain the result of a future f’s execution one can either

1. Async.await(f), which awaits the future’s completion and returns a
Try[T]

2. f.result, which does the same thing, or
3. f.value which is the same as f.result.get.

A runnable future is essentially a thread that 1. returns some value (might
be Unit), 2. is cancellable, and 3. conforms to structured concurrency by any
uncaught exception raised inside the future’s thread will be communicated to
the outside via the Try.

Future.now allows to create a completable future that immediately sets its value
to the given argument. The implementation also makes the use of completable
future clear:

def now[T](result: Try[T]): Future[T] =
val f = CoreFuture[T]()
f.complete(result)
f

CoreFuture is a private class, but its mechanism is exposed via the public class
Promise which does the same thing:

4



class Promise[T]:
private val myFuture = CoreFuture[T]()
val future: Future[T] = myFuture
def complete(result: Try[T]): Unit = myFuture.complete(result)

Cancellation

Cancelling a future with future.cancel() results in its value being immediately
set to Failure(CancellationException) and, if it’s a runnable future, its
thread being Thread.interrupt()ed.

uninterruptible block inside a future f makes it so that if f is cancelled while
the uninterruptible block executes, it’s cancellation will be deferred until the
block finishes, but it will immediately throw CancellatoinException inside f after
the block. uninterruptible does not make the cancellation request disappear,
it just defers it until after the block.

val f = Future {
// this can be interrupted
uninterruptible {

Thread.sleep(300) // this cannot be interrupted *immediately*
}
// this can be interrupted

}

Tasks

class Task[+T](val body: Async ?=> T):
def run(using Async) = Future(body)
def schedule(s: TaskSchedule): Task[T]

Task is a template for making runnable futures and is therefore referentially
transparent. run method instantiates the future and starts executing it immedi-
ately.

Tasks can be optionally given a schedule which describes how a task is to be
repeated.

• Task(g).schedule(TaskSchedule.Every(100)).run will run every 100
milliseconds

• Task(g).schedule(TaskSchedule.RepeatUntilSuccess()).run will
run until g succeeds

• Task(g).schedule(TaskSchedule.RepeatUntilFailure()).run will
run until g fails

• Task(g).schedule(TaskSchedule.ExponentialBackoff(100, maxRepetitions=10)).run
will run with exponentially increasing pauses, but only 10 times

5



zip and alt

extension [T](f1: Future[T])
def zip[U](f2: Future[U])(using Async): Future[(T, U)]
def alt(f2: Future[T])(using Async): Future[T]
def altC(f2: Future[T])(using Async): Future[T]

zip takes two futures and represents a future of either a pair of both values
taken from the underlying futures or, if at least one underlying future returns a
Failure, the first returned error. Example usage: f1.zip(f2). It can also be
used with more than two futures like this: f1 *: f2 *: f3.zip(f4).

alt takes two futures and represents a future with the value of the future which
succeeds first. If all underlying futures fail, it passes the last error. It can be
used like f1.alt(f2) or, with more than two futures, alt(f1, f2, f3).

altC is a version of alt that cancels all the other futures once the first successful
one is ready. If none are successfull, it acts like alt.

Channel Semantics
trait SendableChannel[T]:

def send(x: T)(using Async): Unit

trait ReadableChannel[T]:
val canRead: Async.Source[Try[T]]
def read()(using Async): Try[T] = await(canRead)

trait Channel[T] extends SendableChannel[T], ReadableChannel[T], java.io.Closeable

A channel is an object which one can write (send) to and read what was sent. A
channel can also be closed. Closed channel raises ChannelClosedException
when attempting to write to it and immediately returns Failure(ChannelClosedException)
when attempting to read from it.

Since a channel’s sender is usually different from its reader, Channel can be split
into three references according to their function. One allowing only sending, one
allowing only reading and one allowing only closing. This makes it possible to
use channels in a similar manner to how POSIX pipes are created and used.

trait Channel[T] extends SendableChannel[T], ReadableChannel[T], java.io.Closeable:
def asSendable(): SendableChannel[T] = this
def asReadable(): ReadableChannel[T] = this
def asCloseable(): java.io.Closeable = this

There are two main channel implementations:

trait SyncChannel[T] extends Channel[T]
trait BufferedChannel[T] extends Channel[T]

6



SyncChannel, sometimes called a rendez-vous channel has the following seman-
tics:

• send to an unclosed channel blocks until a reader willing to accept this
value (which is indicated by the reader’s listener returning true after
sampling the value) is found and this reader reads the value.

• reading is done via the canRead async source of potential values (wrapped
in a Try). Note that only reading is represented as an async source, sending
is a blocking operations that is implemented similarly to how await is
implemented.

BufferedChannel(size: Int) is a version of a channel with an internal value
buffer (represented internally as an array with positive size). It has the following
semantics:

• send if the buffer is not full appends the value to the buffer and returns
immediately.

• send if the buffer is full sleeps until some buffer slot is freed, then writes
the value there and immediately returns.

• reading is done via the canRead async source that awaits the buffer being
nonempty and the reader accepting the first value in the buffer. Because
readers can refuse a value, it is possible that many readers await on canRead
while the buffer is non-empty if all of them refused the first value in the
buffer. At no point a reader is allowed to sample/read anything but the
first entry in the buffer.

Channels were designed to be able to seamlessly have multiple readers and
multiple writers at any time, coming from different threads. However, the
readers in such situation are competing with each other for sent values. Each
value sent to the channel gets delivered to exactly one reader. For situations
where this is undesired, there exist ChannelMultiplexer.

ChannelMultiplexer

trait ChannelMultiplexer[T] extends java.io.Closeable:
def addPublisher(c: ReadableChannel[T]): Unit
def removePublisher(c: ReadableChannel[T]): Unit
def addSubscriber(c: SendableChannel[Try[T]]): Unit
def removeSubscriber(c: SendableChannel[Try[T]]): Unit

Channel multiplexer is an object where one can register publisher and subscriber
channels. Internally a multiplexer has a thread that continuously races the set
of publishers and once it reads a value, it sends a copy to each subscriber.

For an unchanging set of publishers and subscribers and assuming that the
multiplexer is the only reader of the publisher channels, every subsciber will
receive the same set of messages, in the same order and it will be exactly all
messages sent by the publishers. The only guarantee on the order of the values
the subscribers see is that values from the same publisher will arrive in order.

7



Channel multiplexer can also be closed, in that case all subscribers will receive
Failure(ChannelClosedException) but no attempt at closing either publishers
or subscribers will be made.

Example Uses
As an example of how the framework can be used, we present detailed tests
of semantics in src/test/scala as well as the implementations of a custom
source: Timer and StartableTimer; and the implementations of future-based
IO integration: PosixLikeIO.{SocketUDP, File}.

Timers

type TimerRang = Boolean
class StartableTimer(val millis: Long) extends Async.OriginalSource[TimerRang], Cancellable:

def start(): Unit
class Timer(millis: Long) extends StartableTimer(millis):

this.start()

StartableTimer is a timer that has to have its start method invoked for it to
begin counting time. Timer is a subclass that invokes start immediately upon
its creation and can be used like Async.await(Timer(1000)).

PosixLikeIO

PosixLikeIO.File and PosixLikeIO.SocketUDP were designed to mimic the
POSIX interface of files and UDP sockets in a JVM-based language. There are
two additional convenience methods readString and writeString mimicking
similar methods from java.nio.file.Files. To integrate nicely with the
environment the interface takes and returns types already present in the Java
standard library (like StandardOpenOption, DatagramPacket) and uses nio
ByteBuffers for zero-copy operations.

class File(val path: String):
def isOpened: Boolean
def open(options: StandardOpenOption*): File
def close(): Unit
def read(buffer: ByteBuffer): Future[Int]
def readString(size: Int, charset: Charset = StandardCharsets.UTF_8): Future[String]
def write(buffer: ByteBuffer): Future[Int]
def writeString(s: String, charset: Charset = StandardCharsets.UTF_8): Future[Int]

class SocketUDP:
def isOpened: Boolean
def bindAndOpen(port: Int): SocketUDP
def open(): SocketUDP
def close(): Unit

8



def send(data: ByteBuffer, address: String, port: Int): Future[Unit]
def receive(): Future[DatagramPacket]

There are also methods allowing one to use files and sockets without having to
explicitly open and close them. These methods are directly inspired by Python’s
with open() as f mechanism.

object PIOHelper:
def withFile[T](path: String, options: StandardOpenOption*)(f: File => T): T
def withSocketUDP[T]()(f: SocketUDP => T): T
def withSocketUDP[T](port: Int)(f: SocketUDP => T): T

PIOHelper.withFile("x.txt", StandardOpenOption.WRITE): f =>
Async.await(f.writeString("Hello world!"))

Performance
Machine details

Benchmarks in this section were performed on a ThinkPad L15 laptop with 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, family 6, model 140 pro-
cessor on Linux and Windows operating systems.

The Linux system used was Ubuntu 22.04 with the output of uname
-a being Linux l15gen2 5.19.0-45-generic #46~22.04.1-Ubuntu SMP
PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20 x86_64 x86_64 x86_64
GNU/Linux. The scala version used was Scala 3.3.0-RC3 (20, Java OpenJDK
64-Bit Server VM). java -version output:

openjdk version "20" 2023-03-21
OpenJDK Runtime Environment (build 20+36-2344)
OpenJDK 64-Bit Server VM (build 20+36-2344, mixed mode, sharing)

The Windows system used was Windows 11 22H2 Build No. 22621. The Scala
version used was Scala 3.3.0-RC3 (20.0.1, Java OpenJDK 64-Bit Server
VM). java -version ouptut:

openjdk version "20.0.1" 2023-04-18
OpenJDK Runtime Environment (build 20.0.1+9-29)
OpenJDK 64-Bit Server VM (build 20.0.1+9-29, mixed mode, sharing)

Benchmarks were performed multiple times to verify reproducibility of the
obtained values. Where appropriate, standard deviation of time measurements
was computed.

Overhead of core primitives

Future The first measured primitive is the Future. Since futures are imple-
mented essentially as virtual threads with some instrumentation in the Project
Loop version of async, we compare creating of a Future and awaiting it to crating

9



a virtual thread and joining it. We check how many such operations can be
performed in a second.

In the following table overhead means the overhead versus the other operation
on the same OS.

OS Thread/Future Operations per second Overhead
Linux Thread 292647 3.40x
Linux Future 86032 0.29x
Windows Thread 108826 4.12x
Windows Future 26402 0.24x

As expected, futures do include overhead compared to just using virtual threads.
On Linux it’s 3.4 and on Windows 4.12 times as expensive (just in the cre-
ation/instrumentation/deletion aspect). It’s worth noting that future/thread
creation is around 3 times slower on Windows than on Linux.

Async.race The second benchmarked primitive is Async.race. Racing three
futures is compared to two other operations.

1. First it is compared to just awaiting the future we know will be the first
to finish.

2. Second, it is compared to replacing futures with virtual threads which
upon completion set an atomic boolean to true. The awaiting thread spin
locks on the boolean.

10



Racing method (Linux) Operations per second Overhead
Async.race 15.590 -
Await the fastest only 15.597 1.00
Spin lock 15.671 1.01

Racing method (Windows) Operations per second Overhead
Async.race 8.87 -
Await the fastest only 9.03 0.982
Spin lock 9.04 0.981

Surprisingly, the current implementation of Async.await matches the performance
of alternative (expected to be faster) methods almost exactly. Again, operations
on Linux are faster than on Windows.

Sending a value over a channel - comparison of channel types The
first benchmarked core operation is sending a value over a channel. In this
scenario there is one sender and one receiver. There are two types of channels
synchronous (SyncChannel) and buffered (BufferedChannel). We also included
a ChannelMultiplexer (with one publisher and one subscriber) where both the
publisher and the subscriber are either Sync or Buffered channels. The goal is to
check how many send/read operations can be performed in a second. The buffer
size of the BufferedChannel was set to 1 since in this benchmark (where we send
a number of elements much larger than expected buffer size) it is expected that
at any point in time, the buffer will be either full or close to full so it’s size
should not make a difference.

OS Channel type Operations per second
Linux SyncChannel 319371
Linux BufferedChannel(1) 308286
Linux ChannelMultiplexer over SyncChannel 155737
Linux ChannelMultiplexer over BuferedChannel 151995
Windows SyncChannel 59713
Windows BufferedChannel(1) 55949
Windows ChannelMultiplexer over SyncChannel 29453
Windows ChannelMultiplexer over BuferedChannel 26159

11



As expected, ChannelMultiplexer makes things around two times slower since it
essentially pipelines two channels together. Once again, in absolute terms, the
Linux version is much faster than the Windows one, this time around 6 times.

Sending a value over a channel - comparison with ideal implementation
It is also worth estimating how much overhead in general channels have. In
the scenario where there is one sender thread and one receiver thread, we can
imagine a specialized implementation of the concept as follows:

@volatile var shared: Long = 0
@volatile var timeForWriting = true

12



val t1 = Thread.startVirtualThread: () =>
var i: Long = 0
while (true) {

while (!timeForWriting) ()
shared = i
timeForWriting = false
i += 1

}

val t2 = Thread.startVirtualThread: () =>
while (true) {

while (timeForWriting) ()
var z = shared
timeForWriting = true

}

There are two threads, the sender t1 and the receiver t2. They have a shared
variable for the communicated value and a shared atomic boolean lock, state of
which signifies whether it is time for writing or reading from the shared value.
Threads synchronize by spin locking on the shared boolean and writing/reading
the shared variable.

In the following table overhead is taken versus the ideal implementation on the
same OS.

OS Method Operations per second Overhead
Linux Ideal implementation 8691652 -
Linux SyncChannel 319371 27.21x
Linux BufferedChannel(1) 308286 28.19x
Windows Ideal implementation 6859438 -
Windows SyncChannel 59713 114.87x
Windows BufferedChannel(1) 55949 122.60x

Compared to an ideal implementation, the overhead of channels on Linux is
around 27 times and on Windows between 114 and 122 times. Such high overhead
is expected, as the ideal code uses no functions, no lambdas, no additional threads
or any instrumentation beyond two primitive memory cells, it is easy to imagine
that for every primitive operation of the ideal code, 30 primitive operations in
the channel version are performed.

Overhead of the example file IO implementation

In order to avoid the physical HDD/SSD hardware latency muddying the bench-
marking results, we performed the benchmark on a RAM disk on both operating
systems. RAM disk installs the file system entirely within the RAM memory of

13



the computer, without touching any physical disk at all. On Linux, RAM disk
was created by the command

mkdir -p /tmp/FIO && sudo mount -t tmpfs -o size=8g tmpfs /tmp/FIO

and on Windows the ImDisk Toolkit software (https://sourceforge.net/projects/imdisk-
toolkit/) with the option ‘Force physical memory’ was used to create a virtual
disk which was later formatted with NTFS with default parameters.

Writing and reading files of size either 4B or 40MB was benchmarked by
three methods, the example file IO implementation included with the project,
FileWriter/FileReader, and java.nio.Files utilities. In each case, java.nio.Files
utilities turned out to be the fastest, so we do not include FileReader/FileWriter
here.

For 4B files:

OS Method Time in milliseconds Standard deviation
Linux PIO.readString 0.0171 0.04
Linux Files.readString 0.004 0.00
Linux PIO.writeString 0.019 0.03
Linux Files.writeString 0.006 0.00
Windows PIO.readString 0.125 0.021
Windows Files.readString 0.079 0.014
Windows PIO.writeString 0.266 0.07
Windows Files.writeString 0.162 0.03

For 40MB files:

OS Method Time in milliseconds Standard deviation
Linux PIO.readString 28.739 2.37
Linux Files.readString 12.522 2.10
Linux PIO.writeString 17.027 0.75
Linux Files.writeString 17.118 2.62
Windows PIO.readString 71.356 2.37
Windows Files.readString 27.917 1.56
Windows PIO.writeString 72.695 9.40
Windows Files.writeString 52.575 9.21

14



Overheads for the small files are around 1.6 on Windows and around 3.5 on Linux
(the better performance of Windows can be explained by Windows handling file
operations slower therefore async overhead mattering less). Overheads for the
large files are surprisingly similar for the both operating systems, around 2.4
times for reading and almost no overhead for writing.

We expect the higher reading overhead for large files to be the result of suboptimal
buffer allocation in the readString() method of the provided IO integration.

This shows that even with minimal optimizations, the async instrumentation

15



does not impose a high overhead when wrapping operations in futures and
promises.

16


	Summary of the project
	Introduction
	Direct style concurrency in Scala
	Project Loom

	Source Semantics
	Async.Source
	Listeners
	Async trait
	Cancellable trait
	map and filter on Sources
	race and either on Sources

	Future Semantics
	Completable and runnable futures
	Cancellation
	Tasks
	zip and alt

	Channel Semantics
	ChannelMultiplexer

	Example Uses
	Timers
	PosixLikeIO

	Performance
	Machine details
	Overhead of core primitives
	Overhead of the example file IO implementation



