
Gears: Asynchronous Programming
in Direct Style Scala

Nguyen Pham, LAMP, EPFL

2024-03-22

Gears: Asynchronous Programming in Direct Style Scala

About me
• My name: Nguyen Pham (In Vietnamese: Phạm Cao Nguyên)

‣ Pronounce me! Wi (as in win) - en (as in enter)

• Second year PhD student in LAMP, EPFL
• Previous work:

‣ Delimited Continuation, Scala Native
‣ In industry: (Async) Rust, Go, Node.js, a bit of Haskell

• Currently: focused on Gears!

2

What is Gears?

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Previously, in Scalar 2023…

(Martin Odersky - Direct Style Scala)

4

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Previously, in Scalar 2023…

(Martin Odersky - Direct Style Scala)

4

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears
• Before: async - a strawman for asynchronous programming in Direct Style
• Now: Gears - an experimental library for asynchronous programming in Direct Style

Scala
• Releases: v0.1, v0.2-RC1!
• Supports Scala JVM (with Loom) and Scala Native (0.5 and above)
• API documentation: https://lampepfl.github.io/gears/api

“Concurrency with Gears”: https://lampepfl.github.io/gears

5

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears
• Before: async - a strawman for asynchronous programming in Direct Style
• Now: Gears - an experimental library for asynchronous programming in Direct Style

Scala
• Releases: v0.1, v0.2-RC1!
• Supports Scala JVM (with Loom) and Scala Native (0.5 and above)
• API documentation: https://lampepfl.github.io/gears/api

“Concurrency with Gears”: https://lampepfl.github.io/gears

5

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears
• Before: async - a strawman for asynchronous programming in Direct Style
• Now: Gears - an experimental library for asynchronous programming in Direct Style

Scala
• Releases: v0.1, v0.2-RC1!
• Supports Scala JVM (with Loom) and Scala Native (0.5 and above)
• API documentation: https://lampepfl.github.io/gears/api

“Concurrency with Gears”: https://lampepfl.github.io/gears

5

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears
• Before: async - a strawman for asynchronous programming in Direct Style
• Now: Gears - an experimental library for asynchronous programming in Direct Style

Scala
• Releases: v0.1, v0.2-RC1!
• Supports Scala JVM (with Loom) and Scala Native (0.5 and above)
• API documentation: https://lampepfl.github.io/gears/api

“Concurrency with Gears”: https://lampepfl.github.io/gears

5

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears
• Before: async - a strawman for asynchronous programming in Direct Style
• Now: Gears - an experimental library for asynchronous programming in Direct Style

Scala
• Releases: v0.1, v0.2-RC1!
• Supports Scala JVM (with Loom) and Scala Native (0.5 and above)
• API documentation: https://lampepfl.github.io/gears/api

“Concurrency with Gears”: https://lampepfl.github.io/gears

5

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

The Primary Concepts

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait…
• Virtual threads gives you the ability to

do blocking operations cheaply - by
suspending themselves away from the
physical thread.
‣ Delimited continuations & a scheduler give you

the same thing.

• Requires you to be part of it, from the
root of the call stack…

• We can model it as a capability!

7

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait…
• Virtual threads gives you the ability to

do blocking operations cheaply - by
suspending themselves away from the
physical thread.
‣ Delimited continuations & a scheduler give you

the same thing.

• Requires you to be part of it, from the
root of the call stack…

• We can model it as a capability!

7

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait…
• Virtual threads gives you the ability to

do blocking operations cheaply - by
suspending themselves away from the
physical thread.
‣ Delimited continuations & a scheduler give you

the same thing.

• Requires you to be part of it, from the
root of the call stack…

• We can model it as a capability!

7

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

An Overview of Gears
• Async Contexts: A capability that allows cheap suspension of computations to

wait for a future event. Gives .await.
• Futures: Simple, straightforward creation of concurrent computations.
• Structured Concurrency: Organize concurrent computations into an easily

manageable tree-like structure.
• Sources and Channels: a toolbox for dealing with the complexity of external and

inter-dependent unstructured concurrency.

8

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

An Overview of Gears
• Async Contexts: A capability that allows cheap suspension of computations to

wait for a future event. Gives .await.
• Futures: Simple, straightforward creation of concurrent computations.
• Structured Concurrency: Organize concurrent computations into an easily

manageable tree-like structure.
• Sources and Channels: a toolbox for dealing with the complexity of external and

inter-dependent unstructured concurrency.

8

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example
def sumFiles(f1: File, f2: File)(using Async): Int =
 Async.group:
 val v1 = Future(f1.read())
 val v2 = f2.read()
 v1.await.parse() + v2.parse()

• v1 and v2 are concurrent
• .await suspends Async context until Future is ready, returns String
• It’s all using Async all the way down*!

trait File:
 def read()(using Async): String

9

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example
def sumFiles(f1: File, f2: File)(using Async): Int =
 Async.group:
 val v1 = Future(f1.read())
 val v2 = f2.read()
 v1.await.parse() + v2.parse()

• v1 and v2 are concurrent
• .await suspends Async context until Future is ready, returns String
• It’s all using Async all the way down*!

trait File:
 def read()(using Async): String

9

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example
def sumFiles(f1: File, f2: File)(using Async): Int =
 Async.group:
 val v1 = Future(f1.read())
 val v2 = f2.read()
 v1.await.parse() + v2.parse()

• v1 and v2 are concurrent
• .await suspends Async context until Future is ready, returns String
• It’s all using Async all the way down*!

trait File:
 def read()(using Async): String

9

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example
def sumFiles(f1: File, f2: File)(using Async): Int =
 Async.group:
 val v1 = Future(f1.read())
 val v2 = f2.read()
 v1.await.parse() + v2.parse()

• v1 and v2 are concurrent
• .await suspends Async context until Future is ready, returns String
• It’s all using Async all the way down*!

trait File:
 def read()(using Async): String

9

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts
We can look at the “Async context” both as a capability and a context:
• As a capability: allows the function/computation to be suspended!

Signals possibility of cancellation, side-effect tracking, safety
• As a context: runtime information on how to perform suspension, attached

scheduler (a.k.a ExecutionContext), a structured scope
• But more importantly: just a regular implicit parameter!
 def fn()(using Async): String = ??? // returns a real string!

No Promise, no Future, no monads!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts
We can look at the “Async context” both as a capability and a context:
• As a capability: allows the function/computation to be suspended!

Signals possibility of cancellation, side-effect tracking, safety
• As a context: runtime information on how to perform suspension, attached

scheduler (a.k.a ExecutionContext), a structured scope
• But more importantly: just a regular implicit parameter!
 def fn()(using Async): String = ??? // returns a real string!

No Promise, no Future, no monads!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts
We can look at the “Async context” both as a capability and a context:
• As a capability: allows the function/computation to be suspended!

Signals possibility of cancellation, side-effect tracking, safety
• As a context: runtime information on how to perform suspension, attached

scheduler (a.k.a ExecutionContext), a structured scope
• But more importantly: just a regular implicit parameter!
 def fn()(using Async): String = ??? // returns a real string!

No Promise, no Future, no monads!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts
We can look at the “Async context” both as a capability and a context:
• As a capability: allows the function/computation to be suspended!

Signals possibility of cancellation, side-effect tracking, safety
• As a context: runtime information on how to perform suspension, attached

scheduler (a.k.a ExecutionContext), a structured scope
• But more importantly: just a regular implicit parameter!
 def fn()(using Async): String = ??? // returns a real string!

No Promise, no Future, no monads!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Almost a blocking API
Sequentially calling “async functions” is as simple as

def f()(using Async): Int = ???
def g()(using Async): Int = ???

def h()(using Async) =
 f() + g()

h blocks until f returns, then blocks until g returns, possibly suspending within f or g.

11

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sequential actions stay the same
trait Item:
 def transform()(using Async): this.type
 def isValid(using Async): Boolean

def transformAll(items: Seq[Item])(using Async) =
 items
 .filter(_.isValid) // Seq.filter
 .map(_.transform()) // Seq.map

Capturing Async is completely fine, if they don’t persist.

12

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Futures: Spawning Concurrent Computations
To spawn concurrent computations, you need Async.Spawn:

def spawn()(using Async): Int =
 Async.group: (spawn: Async.Spawn) ?=>
 val v1 = Future(using spawn)(async ?=> f()(using async))
 val v2 = Future(using spawn)(async ?=> g()(using async))
 val v3 = Future(using spawn): async ?=>
 sleep(1000.years)(using async)
 v1.await(using spawn) + v2.await(using spawn)

Once Async.group returns, v3 is cancelled. No futures running after spawn.

13

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Futures: Spawning Concurrent Computations
To spawn concurrent computations, you need Async.Spawn:

def spawn()(using Async): Int =
 Async.group:
 val v1 = Future(f())
 val v2 = Future(g())
 val v3 = Future:
 sleep(1000.years)
 v1.await + v2.await

Once Async.group returns, v3 is cancelled. No futures running after spawn.

13

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Scopes
Futures are properly scoped to their context:

def run()(using async: Async) =
 Async.group: // creates child Async context
 val a = Future(...)
 val b = Future(...)
 // a & b cleaned up

14

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Scopes
Futures are properly scoped to their context:

def run()(using async: Async) =
 Async.group: // creates child Async context
 val a = Future(...)
 val b = Future(...)
 // a & b cleaned up

 val vf = f()(using async)
 // all futures spawned by f() cleaned up

14

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Structured Concurrency
def run()(using Async) =
 val f = Future:
 val f1 = Future(...)
 ...
 val g = Future:
 val g1 = Future(...)
 ...
 f.await + g.await

Async scopes with concurrent computations form a tree

15

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out
• .await throws if the Future does, .awaitResult returns Try[T].
• .or and .zip simplifies racing and combining two futures.
val (v1, v2) = f1.zip(f2.or(f3)).await

• Seq[Future[_]] methods:
‣ .awaitAll: essentially .map(_.await), but throws early!
‣ .awaitFirst: Get the first Future returning with success.
‣ … and their withCancel counterparts: quickly cancel unneeded futures.
items.map(v => Future(v.transformAsync()))
 .awaitAll // in parallel, almost equivalent to...
 // .map(_.await)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out
• .await throws if the Future does, .awaitResult returns Try[T].
• .or and .zip simplifies racing and combining two futures.
val (v1, v2) = f1.zip(f2.or(f3)).await

• Seq[Future[_]] methods:
‣ .awaitAll: essentially .map(_.await), but throws early!
‣ .awaitFirst: Get the first Future returning with success.
‣ … and their withCancel counterparts: quickly cancel unneeded futures.
items.map(v => Future(v.transformAsync()))
 .awaitAll // in parallel, almost equivalent to...
 // .map(_.await)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out
• .await throws if the Future does, .awaitResult returns Try[T].
• .or and .zip simplifies racing and combining two futures.
val (v1, v2) = f1.zip(f2.or(f3)).await

• Seq[Future[_]] methods:
‣ .awaitAll: essentially .map(_.await), but throws early!
‣ .awaitFirst: Get the first Future returning with success.
‣ … and their withCancel counterparts: quickly cancel unneeded futures.
items.map(v => Future(v.transformAsync()))
 .awaitAll // in parallel, almost equivalent to...
 // .map(_.await)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: Select
Go’s select, but for futures.

• No Future wrapping, no
clunky syntax*,

• .handle takes a normal
lambda and returns a real
value.

• For side-effects: guarantees
exactly one branch evaluated!

val f1 = Future(1)
val f2 = Future("one")
val v: Either[Int, String] = Async.select(
 f1.handle: i =>
 println(s"Int $i")
 Left(i),
 f2.handle: s =>
 println(s"String $s")
 Right(s),
)

17

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels
• Simple .read()(using Async)

and .send(x: T)(using
Async) APIs

• Can combine with the power
of Async.select if needed

• Comes in 3 variants:
SyncChannel,
BufferedChannel,
UnboundedChannel

val in = SyncChannel[Work]()
val out = BufferedChannel[Result](size: 10)
val workers = (1 to 10).map: _ =>
 Future:
 in.read() match
 case Left(Closed) => ()
 case Right(work) => out.send(process(work))

def loop(i: Int): Unit =
 if i == 1000 then in.close()
 else Async.select(
 in.sendSource(Work(i)).handle(_ => loop(i+1)),
 out.readSource.handle: result =>
 println(s"Work result: $result")
 loop(i),
)

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels
• Simple .read()(using Async)

and .send(x: T)(using
Async) APIs

• Can combine with the power
of Async.select if needed

• Comes in 3 variants:
SyncChannel,
BufferedChannel,
UnboundedChannel

val in = SyncChannel[Work]()
val out = BufferedChannel[Result](size: 10)
val workers = (1 to 10).map: _ =>
 Future:
 in.read() match
 case Left(Closed) => ()
 case Right(work) => out.send(process(work))

def loop(i: Int): Unit =
 if i == 1000 then in.close()
 else Async.select(
 in.sendSource(Work(i)).handle(_ => loop(i+1)),
 out.readSource.handle: result =>
 println(s"Work result: $result")
 loop(i),
)

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels
• Simple .read()(using Async)

and .send(x: T)(using
Async) APIs

• Can combine with the power
of Async.select if needed

• Comes in 3 variants:
SyncChannel,
BufferedChannel,
UnboundedChannel

val in = SyncChannel[Work]()
val out = BufferedChannel[Result](size: 10)
val workers = (1 to 10).map: _ =>
 Future:
 in.read() match
 case Left(Closed) => ()
 case Right(work) => out.send(process(work))

def loop(i: Int): Unit =
 if i == 1000 then in.close()
 else Async.select(
 in.sendSource(Work(i)).handle(_ => loop(i+1)),
 out.readSource.handle: result =>
 println(s"Work result: $result")
 loop(i),
)

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels
• Simple .read()(using Async)

and .send(x: T)(using
Async) APIs

• Can combine with the power
of Async.select if needed

• Comes in 3 variants:
SyncChannel,
BufferedChannel,
UnboundedChannel

val in = SyncChannel[Work]()
val out = BufferedChannel[Result](size: 10)
val workers = (1 to 10).map: _ =>
 Future:
 in.read() match
 case Left(Closed) => ()
 case Right(work) => out.send(process(work))

def loop(i: Int): Unit =
 if i == 1000 then in.close()
 else Async.select(
 in.sendSource(Work(i)).handle(_ => loop(i+1)),
 out.readSource.handle: result =>
 println(s"Work result: $result")
 loop(i),
)

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sources: Working with External, Unstructred Events
Async.Source is a common abstraction for all awaitable source of values.

• Promise and
Future.withResolver creates
bridges for callbacks

• Source allows a stream of values
to arrive

• Existing tools work: .await and
Async.select

• Conversion from
scala.concurrent.Future: .asGears.

def withCallback(arg: Int)(callback: Try[String] => Unit)
 : Unit = ???
def withGears(arg: Int): Future[String] =
 Future.withResolver: resolver =>
 withCallback(arg)(resolver.complete))

19

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sources: Working with External, Unstructred Events
Async.Source is a common abstraction for all awaitable source of values.

• Promise and
Future.withResolver creates
bridges for callbacks

• Source allows a stream of values
to arrive

• Existing tools work: .await and
Async.select

• Conversion from
scala.concurrent.Future: .asGears.

def withCallback(arg: Int)(callback: Try[String] => Unit)
 : Unit = ???
def withGears(arg: Int): Future[String] =
 Future.withResolver: resolver =>
 withCallback(arg)(resolver.complete))
val timer = new Timer.Tick(every: 500.millis)
val fut = Future(timer.run())
while true do
 timer.await
 println("Hi!") // prints every 500 millis

19

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sources: Working with External, Unstructred Events
Async.Source is a common abstraction for all awaitable source of values.

• Promise and
Future.withResolver creates
bridges for callbacks

• Source allows a stream of values
to arrive

• Existing tools work: .await and
Async.select

• Conversion from
scala.concurrent.Future: .asGears.

def withCallback(arg: Int)(callback: Try[String] => Unit)
 : Unit = ???
def withGears(arg: Int): Future[String] =
 Future.withResolver: resolver =>
 withCallback(arg)(resolver.complete))
val timer = new Timer.Tick(every: 500.millis)
val fut = Future(timer.run())
while true do
 timer.await
 println("Hi!") // prints every 500 millis

19

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sources: Working with External, Unstructred Events
Async.Source is a common abstraction for all awaitable source of values.

• Promise and
Future.withResolver creates
bridges for callbacks

• Source allows a stream of values
to arrive

• Existing tools work: .await and
Async.select

• Conversion from
scala.concurrent.Future: .asGears.

def withCallback(arg: Int)(callback: Try[String] => Unit)
 : Unit = ???
def withGears(arg: Int): Future[String] =
 Future.withResolver: resolver =>
 withCallback(arg)(resolver.complete))
val timer = new Timer.Tick(every: 500.millis)
val fut = Future(timer.run())
while true do
 timer.await
 println("Hi!") // prints every 500 millis
val stdFuture = new scala.concurrent.Future(...)
val gearsFuture = stdFuture.asGears
val value = gearsFuture.await
val stdFutureAgain = gearsFuture.asScala

19

Writing Gears code

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.

• Future wraps exceptions in a Try,
unwrapped by default.

• Cancellation are handled through
catching CancellationException.

• Build your own error handling:
CanThrow, Result, boundary/
break: direct style makes it trivial.

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.

• Future wraps exceptions in a Try,
unwrapped by default.

• Cancellation are handled through
catching CancellationException.

• Build your own error handling:
CanThrow, Result, boundary/
break: direct style makes it trivial.

val f = Future(...)
f.await // unwraps Try
f.awaitResult // returns Try[T]

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.

• Future wraps exceptions in a Try,
unwrapped by default.

• Cancellation are handled through
catching CancellationException.

• Build your own error handling:
CanThrow, Result, boundary/
break: direct style makes it trivial.

val f = Future(...)
f.await // unwraps Try
f.awaitResult // returns Try[T]

Future:
 try
 sleep(10.minutes)
 catch
 case _: CancellationException =>
 println("Sleep cancelled")

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.

• Future wraps exceptions in a Try,
unwrapped by default.

• Cancellation are handled through
catching CancellationException.

• Build your own error handling:
CanThrow, Result, boundary/
break: direct style makes it trivial.

val f = Future(...)
f.await // unwraps Try
f.awaitResult // returns Try[T]

def failible()(using Async): Result[Int]
val fut: Future[Result[Int]] = Future:
 Result:
 val f = failible().?
 f + 1
fut.await //: Result[Int]

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Timeout and Retry
• withTimeout creates a scope that is

cancelled after the timeout.
• Retry lets you run actions with

retrying, delay, backoff, …
• All “blocking”: feel free to run

them in Future. Actor pattern!

val body: String = withTimeout(10.millis):
 val f = requests.get("https://google.com")
 f.body

22

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Timeout and Retry
• withTimeout creates a scope that is

cancelled after the timeout.
• Retry lets you run actions with

retrying, delay, backoff, …
• All “blocking”: feel free to run

them in Future. Actor pattern!

val body: String = withTimeout(10.millis):
 val f = requests.get("https://google.com")
 f.body

 Retry
 .untilSuccess
 .withMaximumFailures(5)
 .withDelay(
 Delay.exponentialBackoff(
 maximum = 1.minute,
 starting = 1.second,
 jitter = Jitter.full,
)):
 val body = request.get("https://google.com")
 // ...

22

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Timeout and Retry
• withTimeout creates a scope that is

cancelled after the timeout.
• Retry lets you run actions with

retrying, delay, backoff, …
• All “blocking”: feel free to run

them in Future. Actor pattern!

val body: String = withTimeout(10.millis):
 val f = requests.get("https://google.com")
 f.body

val worker = Future:
 Retry
 .untilSuccess
 .withMaximumFailures(5)
 .withDelay(
 Delay.exponentialBackoff(
 maximum = 1.minute,
 starting = 1.second,
 jitter = Jitter.full,
)):
 val body = request.get("https://google.com")
 // ...

22

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

def blocking(body: Async ?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

def blocking(body: Async ?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

Async.blocking lets you “suspend” to wait for Futures. It does that… by blocking the thread.

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world
How do you get an Async context in the first place?

Components of Async:
• A suspension mechanism
• Capability to resume a computation
• Management of child scopes

Ingredients of Async.blocking:
• SuspendSupport a.k.a delimited continuation interface

• A Scheduler
• CompletionGroup created automatically

def blocking(body: Async ?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

Async.blocking lets you “suspend” to wait for Futures. It does that… by blocking the thread.
Usage: part of @main, or during conversion from blocking code!

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Target support: Now and beyond

24

What's next?

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency
• Loom and Continuations allow a direct-style .await API, making natural

asynchronous code possible
• Viewing Async as a capability lets us use Scala’s unique implicit parameter for a

lean approach to managing concurrent code.
• Gears combines both and introduces Structured Concurrency as a guiding

principle for writing concurrent programs.

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency
• Loom and Continuations allow a direct-style .await API, making natural

asynchronous code possible
• Viewing Async as a capability lets us use Scala’s unique implicit parameter for a

lean approach to managing concurrent code.
• Gears combines both and introduces Structured Concurrency as a guiding

principle for writing concurrent programs.

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency
• Loom and Continuations allow a direct-style .await API, making natural

asynchronous code possible
• Viewing Async as a capability lets us use Scala’s unique implicit parameter for a

lean approach to managing concurrent code.
• Gears combines both and introduces Structured Concurrency as a guiding

principle for writing concurrent programs.

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears
• Gears right now is just base framework!
• IO: the source of (most) suspends!

‣ gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
 def read(buf: Buffer)(using Async): Int

Coming soon!
• A first “real-use” library: an HTTP client!
• To flesh out: customizing cancellation models, supervising futures

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears
• Gears right now is just base framework!
• IO: the source of (most) suspends!

‣ gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
 def read(buf: Buffer)(using Async): Int

Coming soon!
• A first “real-use” library: an HTTP client!
• To flesh out: customizing cancellation models, supervising futures

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears
• Gears right now is just base framework!
• IO: the source of (most) suspends!

‣ gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
 def read(buf: Buffer)(using Async): Int

Coming soon!
• A first “real-use” library: an HTTP client!
• To flesh out: customizing cancellation models, supervising futures

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears
• Gears right now is just base framework!
• IO: the source of (most) suspends!

‣ gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
 def read(buf: Buffer)(using Async): Int

Coming soon!
• A first “real-use” library: an HTTP client!
• To flesh out: customizing cancellation models, supervising futures

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Thank you!
To learn more about Gears:

https://lampepfl.github.io/gears

Follow its development:
• GitHub: lampepfl/gears
• Me: @natsukagami (GitHub), @nki@dtth.ch (Mastodon)
• Lots of development documented on Gears Website!

Learn more about Direct Style Scala:
• Martin Odersky, “Direct Style Scala”, Scalar 2023
• Adam Warski, Ox: Asynchronous Programming with

Direct Style & Loom

28

https://lampepfl.github.io/gears
https://lampepfl.github.io/gears

Bonus Slides

Gears: Asynchronous Programming in Direct Style Scala
Bonus Slides

Comparison to Ox
• Ox forgoes the concept of suspension.

Loom Virtual threads means blocking == suspending.
‣ Gears keeps this explicit. Allows explicit tracking of this capability, and allowing

independent implementations from core Scala Native.
• Ox has user, daemon and unsupervised threads.

Gears make a simplification: There are only Futures that:
‣ Completes with Failure on exception
‣ Don’t cancel parent scope on failure
‣ Are cancelled when scope ends

• Ox bakes in Either and Try support for error handling, Gears prefers Try.

30

Gears: Asynchronous Programming in Direct Style Scala
Bonus Slides

What color is your function?
1. Every function has a color. Yes, either you take Async, or you don’t.
2. The way you call a function depends on its color. No!
3. You can only call a red function from within a red function. Yes*.

• Async.blocking exists, but you have to be aware of its limits.
4. Red functions are more painful to call. No…
5. Some core library functions are red. Not yet, but will be, and that’s fine!

Original Article:
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

31

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

	About me
	Previously, in Scalar 2023...
	Async is now Gears
	The ability to wait...
	An Overview of Gears
	A simple example
	Async Contexts
	Almost a blocking API
	Sequential actions stay the same
	Futures: Spawning Concurrent Computations
	Async Scopes
	Structured Concurrency
	Future Composition: In and Out
	Future Composition: Select
	Future Communication: Channels
	Sources: Working with External, Unstructred Events
	Error Handling
	Timeout and Retry
	Entry into the async world
	Target support: Now and beyond
	A new view of concurrency
	Next steps for Gears
	Thank you!
	Comparison to Ox
	What color is your function?

