Gears: Asynchronous Programming
in Direct Style Scala

Nguyen Pham, LAMP, EPFL

2024-03-22

! Gears: Asynchronous Programming in Direct Style Scala

About me

« My name: Nguyen Pham (In Vietnamese: Pham Cao Nguyén)

» Pronounce me! Wi (as in win) - en (as in enter)

« Second year PhD student in 8 LAMP, EPFL
« Previous work:

» Delimited Continuation, £ Scala Native

» In industry: (Async) Rust, Go, Node.js, a bit of Haskell
 Currently: focused on Gears!

What is Gears?

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Previously, in Scalar 2023...

@ AV 2 esdan — |+ Pagewidth v 12|86 »

Direct-Style Futures

With suspend(*), we can implement lightweight and universal
await construct that can be called anywhere.

This can express simple, direct-style futures.

val sum = Future:
val f1 = Future(cl.read)
val f2 = Future(c2.read)
f1.value + f2.value

Structured concurrency: Local futures f1 and f2 complete before
sum completes. This might mean that one of them is cancelled if
the other returns with a failure.

(*) Loom-like fibers would work as well.

(Martin Odersky - Direct Style Scala)

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Previously, in Scalar 2023...

— |+ Pagewidth v 120|6m»

A Strawman

lampepfl/async is an early stage prototype of a modern, low-level
concurrency library in direct style.

Main elements

m Futures: the primary active elements
m Channels: the primary passive elements

m Async Sources Futures and Channels both implement a new
fundamental abstraction: an asynchronous source.

m Async Contexts An async context is a capability that allows
a computation to suspend while waiting for the result of an
async source.

Link: github.com/lampepfl/async

(Martin Odersky - Direct Style Scala)

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears

« Before: async - a strawman for asynchronous programming in Direct Style

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears

« Before: async - a strawman for asynchronous programming in Direct Style
« Now: Gears - an experimental library for asynchronous programming in Direct Style
Scala

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears

« Before: async - a strawman for asynchronous programming in Direct Style

« Now: Gears - an experimental library for asynchronous programming in Direct Style
Scala

e Releases: v0.1, v0.2-RC1!

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears

« Before: async - a strawman for asynchronous programming in Direct Style

« Now: Gears - an experimental library for asynchronous programming in Direct Style
Scala

e Releases: v0.1, v0.2-RC1!
« Supports Scala JVM (with Loom) and Scala Native (0.5 and above)

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

Gears: Asynchronous Programming in Direct Style Scala
What is Gears?

Async is now Gears

« Before: async - a strawman for asynchronous programming in Direct Style

« Now: Gears - an experimental library for asynchronous programming in Direct Style
Scala

e Releases: v0.1, v0.2-RC1!

« Supports Scala JVM (with Loom) and Scala Native (0.5 and above)

« API documentation: https://lampepfl.github.io/gears/api
“Concurrency with Gears”: https://lampepfl.github.io/gears

https://lampepfl.github.io/gears/api
https://lampepfl.github.io/gears

The Primary Concepts

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait...

do blocking operations cheaply - by

Delim Cont. (Native)

o Virtual threads gives you the ability to [

VirtualThread (Loomi] _______ SuSPQHJS untﬂ/

suspending themselves away from the J/
physical thread.

» Delimited continuations & a scheduler give you

the same thing.

|

|

|

] !

|

|

$ V
[£ j_wQ;ts for—> external

event

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait...

do blocking operations cheaply - by

Delim Cont. (Native)

o Virtual threads gives you the ability to [

VirtualThread (Loomﬁ] _______ SUSPQAJS untﬂ!

suspending themselves away from the J/

physical thread.

» Delimited continuations & a scheduler give you []
the same thing.

 Requires you to be part of it, from the J/
V
root of the call stack...

[f]—uwd‘ts for—>| external

event

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

The ability to wait...

o Virtual threads gives you the ability to
do blocking operations cheaply - by ' Async context ' ——————— suspends until/

suspending themselves away from the J/

physical thread.

» Delimited continuations & a scheduler give you []
the same thing.

 Requires you to be part of it, from the |
root of the call stack... v

: . . —_— 1

« We can model it as a capability! [f] waits Fo o

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

An Overview of Gears

« Async Contexts: A capability that allows cheap suspension of computations to
wait for a future event. Gives .await.

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

An Overview of Gears

« Async Contexts: A capability that allows cheap suspension of computations to
wait for a future event. Gives .await.

 Futures: Simple, straightforward creation of concurrent computations.

o Structured Concurrency: Organize concurrent computations into an easily
manageable tree-like structure.

 Sources and Channels: a toolbox for dealing with the complexity of external and
inter-dependent unstructured concurrency.

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example

def sumFiles(fl: File, f2: File)(using Async): Int =
Async.group:
val vl = Future(fl.read())
val v2 = f2.read()
vl.await.parse() + v2.parse()

Async

trait File
def read Async): String

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example

def sumFiles(fl: File, f2: File)(using Async): Int =
Async.group:
val vl = Future(fl.read())
val v2 = f2.read()
vl.await.parse() + v2.parse()

« v1 and v2 are concurrent

Async

trait File
def read Async): String

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example

def sumFiles(fl: File, f2: File)(using Async): Int =
Async.group:
val vl = Future(fl.read())
val v2 = f2.read()
vl.await.parse() + v2.parse()

« vl and v2 are concurrent
- .await suspends Async context until Future is ready, returns String
Async

trait File
def read Async): String

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

A simple example

def sumFiles(fl: File, f2: File)(using Async): Int =
Async.group:
val vl = Future(fl.read())
val v2 = f2.read()
vl.await.parse() + v2.parse()

« vl and v2 are concurrent
- .await suspends Async context until Future is ready, returns String
o It’s all using Async all the way down™!

trait File:
def read() (using Async): String

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts

We can look at the “Async context” both as a capability and a context:

def fn Async String = ??? // returns a real string!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts

We can look at the “Async context” both as a capability and a context:
« As a capability: allows the function/computation to be suspended!
Signals possibility of cancellation, side-effect tracking, safety

def fn Async String = ??? // returns a real string!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts

We can look at the “Async context” both as a capability and a context:

« As a capability: allows the function/computation to be suspended!
Signals possibility of cancellation, side-effect tracking, safety

 As a context: runtime information on how to perform suspension, attached
scheduler (a.k.a ExecutionContext), a structured scope

def fn Async String = ??? // returns a real string!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Contexts

We can look at the “Async context” both as a capability and a context:
« As a capability: allows the function/computation to be suspended!
Signals possibility of cancellation, side-effect tracking, safety
 As a context: runtime information on how to perform suspension, attached
scheduler (a.k.a ExecutionContext), a structured scope
« But more importantly: just a regular implicit parameter!
def fn()(using Async): String = ??? // returns a real string!

No Promise, no Future, no monads!

10

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Almost a blocking API

Sequentially calling “async functions” is as simple as

def f()(using Async): Int = 777
def g()(using Async): Int = 777

def h()(using Async) =
fO) +9()

h blocks until f returns, then blocks until g returns, possibly suspending within f or g.

11

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sequential actions stay the same

trait Item:
def transform() (using Async): this.type
def isValid(using Async): Boolean

def transformAll(items: Seq[Item]) (using Async) =
items
.filter(.isValid) // Seq.filter
.map(.transform()) // Seqg.map

Capturing Async is completely fine, if they don’t persist.

12

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Futures: Spawning Concurrent Computations

To spawn concurrent computations, you need Async.Spawn:

def spawn() (using Async): Int =
Async.group: (spawn: Async.Spawn) 7?7=>
val vl = Future(using spawn) (async ?=> f()(using async))
val v2 = Future(using spawn) (async ?=> g()(using async))
val v3 = Future(using spawn): async 7=>
sleep(1000.years) (using async)
vl.await(using spawn) + v2.await(using spawn)

13

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Futures: Spawning Concurrent Computations

To spawn concurrent computations, you need Async.Spawn:

def spawn() (using Async): Int =
Async.group:
val vl = Future(f())
val v2 = Future(g())
val v3 = Future:
sleep(1000.years)
vl.await + v2.await

Once Async.group returns, v3 is cancelled. No futures running after spawn.

13

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Scopes

Futures are properly scoped to their context:

def run()(using async: Async) =
Async.group: // creates child Async context
val a = Future(...)
val b = Future(...)
// a & b cleaned up

14

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Async Scopes

Futures are properly scoped to their context:

def run()(using async: Async) =
Async.group: // creates child Async context
val a = Future(...)
val b = Future(...)
// a & b cleaned up

val vf = f()(using async)
// all futures spawned by f() cleaned up

14

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Structured Concurrency

def run()(using Async) =
val f = Future:

val fl1 = Futu re(e) Future I\=utur§:i§t
) (o)~

val g = Future: = .
val gl = Futu re(e) Futu‘re

e Async = <=b
f.await + g.await - ‘ group

Async scopes with concurrent computations form a tree

15

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out

o .await throws if the Future does, .awaitResult returns Try[T].

val =

Seq|Future

=> Future
// in parallel, almost equivalent to...
// .map(.awailt)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out

o .await throws if the Future does, .awaitResult returns Try[T].
« .or and .zip simplifies racing and combining two futures.

val (vl, v2) = fl.zip(f2.0r(f3)).await

Seq|Future

=> Future
// in parallel, almost equivalent to...
// .map(.awailt)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: In and Out

e .awailit throws if the Future does, .awaitResult returns Try[T].
« .or and .zip simplifies racing and combining two futures.

val (vl, v2) = fl.zip(f2.0r(f3)).await
« Seq[Future[1] methods:

» .awaitAll: essentially .map(.await), but throws early!
» .awaitFirst: Get the first Future returning with success.

» ... and their withCancel counterparts: quickly cancel unneeded futures.

items.map(v => Future(v.transformAsync()))

.awaitAll // 1in parallel, almost equivalent to...
// .map(.awailt)

16

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Composition: Select
Go’s select, but for futures.

« No Future wrapping, no val fl = Future(1)
val f2 = Future("one")

clunky syntax®, | |
val v: Either[Int, String] = Async.select(

- .handle takes a normal £1 handle: i =
lambda and returns a real println(s"Int $i")
value. Left(1),

f2.handle: s =>
println(s"“String $s")
exactly one branch evaluated! Right(s),

o For side-effects: guarantees

17

Gears: Asynchronous Programming in Direct Style Scala

The Primary Concepts

Future Communication: Channels

val in = SyncChannel[Work] ()

val out =

val workers

Future:

BufferedChannel[Result] (size: 10)

= (1 to 10).map: =>

in.read() match
case Left(Closed) => ()
case Right(work) => out.send(process(work))

def loop(i:

Int): Unit

if 1 == 1000 then in.close()
else Async.select(
in.sendSource(Work(i)).handle(=> loop(i+l)),
out.readSource.handle: result =>
println(s"Work result: $result")
Lloop(i),

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels

o Slmple . read()(using Async) val in = SyncChannel[Work] ()
val out = BufferedChannel[Result](size: 10)

and .send(x: T) (using val workers = (1 to 10).map: =>
Future:
Async) APIs in.read() match
case Left(Closed) => ()
case Right(work) => out.send(process(work))

def loop(i: Int): Unit =
if 1 == 1000 then in.close()
else Async.select(
in.sendSource(Work(i)).handle(=> loop(i+l)),
out.readSource.handle: result =>
println(s"Work result: $result")
Lloop(i),

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels

o Slmple . read()(using Async) val in = SyncChannel[Work] ()
val out = BufferedChannel[Result](size: 10)

and .send(x: T) (using val workers = (1 to 10).map: =>
Future:
Async) APIs in.read() match
- Can combine with the power case Left(Closed) => ()

case Right(work) => out.send(process(work
of Async.select if needed ot twortd P orta))
def loop(i: Int): Unit =
if 1 == 1000 then in.close()
else Async.select(
in.sendSource(Work(i)).handle(=> loop(i+l)),
out.readSource.handle: result =>
println(s"Work result: $result")
Lloop(i),

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Future Communication: Channels

o Slmple . read()(using Async) val in = SyncChannel[Work] ()
val out = BufferedChannel[Result](size: 10)

and .send(x: T) (using val workers = (1 to 10).map: =>
Future:
Async) APIs in.read() match
« Can combine with the power case Left(Closed) => ()

. case Right(work) => out.send(process(work))
of Async.select if needed

def loop(i: Int): Unit =
if 1 == 1000 then in.close()

« Comes in 3 variants:

SyncChannel, else Async.select(
in.sendSource(Work(i)).handle(=> loop(i+l)),
BufferedChannel, out.readSource.handle: result =>

UnboundedChannel println(s"Work result: $result")
Lloop(i),

18

Gears: Asynchronous Programming in Direct Style Scala
The Primary Concepts

Sources: Working with External, Unstructred Events

Async.Source is a common abstraction for all awaitable source of values.

e Promise and def withCallback(arg: Int)(callback: Try[String] => Unit)
: Unit = 777
def withGears(arg: Int): Future[String] =

bridges for callbacks Future.withResolver: resolver =>
withCallback(arg) (resolver.complete))

Future.withResolver creates

19

Gears: Asynchronous Programming in Direct Style Scala

The Primary Concepts

Sources: Working with External, Unstructred Events

Async.Source is a common abstraction for all awaitable source of values.

« Promise and
Future.withResolver creates
bridges for callbacks

« Source allows a stream of values
to arrive

def withCallback(arg: Int)(callback: Try[String] => Unit)
: Unit = ?77?
def withGears(arg: Int): Future[String] =
Future.withResolver: resolver =>

withCallback(arg) (resolver.complete))
val timer = new Timer.Tick(every: 500.millis)

val fut = Future(timer.run())
while true do
timer.await
println("Hi!") // prints every 500 millis

19

Gears: Asynchronous Programming in Direct Style Scala

The Primary Concepts

Sources: Working with External, Unstructred Events

Async.Source is a common abstraction for all awaitable source of values.

« Promise and
Future.withResolver creates
bridges for callbacks

« Source allows a stream of values
to arrive

- Existing tools work: .await and
Async.select

def withCallback(arg: Int)(callback: Try[String] => Unit)
: Unit = ?77?
def withGears(arg: Int): Future[String] =
Future.withResolver: resolver =>

withCallback(arg) (resolver.complete))
val timer = new Timer.Tick(every: 500.millis)

val fut = Future(timer.run())
while true do
timer.await
println("Hi!") // prints every 500 millis

19

Gears: Asynchronous Programming in Direct Style Scala

The Primary Concepts

Sources: Working with External, Unstructred Events

Async.Source is a common abstraction for all awaitable source of values.

« Promise and
Future.withResolver creates
bridges for callbacks

« Source allows a stream of values
to arrive

- Existing tools work: .await and
Async.select

« Conversion from
scala.concurrent.Future: .asGears.

def withCallback(arg: Int)(callback: Try[String] => Unit)
: Unit = ?77?
def withGears(arg: Int): Future[String] =
Future.withResolver: resolver =>

withCallback(arg) (resolver.complete))
val timer = new Timer.Tick(every: 500.millis)

val fut = Future(timer.run())
while true do
timer.await
println("Hi!") // prints every 500 millis
val stdFuture = new scala.concurrent.Future(...)
val gearsFuture = stdFuture.asGears
val value = gearsFuture.await
val stdFutureAgain = gearsFuture.asScala

19

Writing Gears code

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling

Gears embraces Try, but direct style lets you write your own error handling easily.

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.
- Future wraps exceptionsina Try, val f = Future(...)

unwrapped by default. f.await // unwraps Try

f.awaitResult // returns Try[T]

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.
- Future wraps exceptionsina Try, val f = Future(...)

unwrapped by default. f.await // unwraps Try

« Cancellation are handled through f.awaitResult // returns Try[T]

catching CancellationException. Future:

try
sleep(10.minutes)
catch
case : CancellationException =>

println("Sleep cancelled")

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Error Handling
Gears embraces Try, but direct style lets you write your own error handling easily.
- Future wraps exceptionsina Try, val f = Future(...)

unwrapped by default. f.await // unwraps Try

« Cancellation are handled through f.awaitResult // returns Try[T]

catching CancellationException. def failible()(using Async): Result[Int]

. Build yOUr OWI eITor handling: val fut: Future[Result[Int]] = Future:

Result:
CanThrow,Result,boundary/.. val f = failible().?
break: direct style makes it trivial. fF 1

fut.await //: Result|[Int]

21

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Timeout and Retry

e withTimeout creates a Scope that 1S val body: String = withTimeout(10.millis):

. val f = requests.get("https://google.com")
cancelled after the timeout. f_body

22

Gears: Asynchronous Programming in Direct Style Scala

Writing Gears code

Timeout and Retry

« withTimeout creates a scope that is
cancelled after the timeout.

« Retry lets you run actions with
retrying, delay, backoff, ...

val body: String = withTimeout(10.millis):

val f = requests.get("https://google.com")
f.body

Retry

.untilSuccess

.withMaximumFailures(5)

.withDelay(

Delay.exponentialBackoff(

maximum = l.minute,
starting = 1l.second,
jitter = Jitter.full,

)):

val body = request.get("https://google.com")

/]

22

Gears: Asynchronous Programming in Direct Style Scala

Writing Gears code

Timeout and Retry

« withTimeout creates a scope that is
cancelled after the timeout.

« Retry lets you run actions with
retrying, delay, backoff, ...

« All "blocking”: feel free to run
them in Future. Actor pattern!

val body: String = withTimeout(10.millis):
val f = requests.get("https://google.com")
f.body

val worker = Future:
Retry
.untilSuccess
.withMaximumFailures(5)
.withDelay (
Delay.exponentialBackoff(
maximum = l.minute,
starting = 1l.second,
jitter = Jitter.full,
)):
val body = request.get("https://google.com")
/] ...

22

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:
« A suspension mechanism e SuspendSupport ak.a delimited continuation interface

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:
« A suspension mechanism e SuspendSupport ak.a delimited continuation interface
« Capability to resume a computation « A Scheduler

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:
« A suspension mechanism e SuspendSupport ak.a delimited continuation interface
« Capability to resume a computation « A Scheduler

« Management of child scopes - CompletionGroup created automatically

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:

« A suspension mechanism e SuspendSupport ak.a delimited continuation interface
« Capability to resume a computation « A Scheduler

« Management of child scopes - CompletionGroup created automatically

def blocking(body: Async 7?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:

« A suspension mechanism e SuspendSupport ak.a delimited continuation interface
« Capability to resume a computation « A Scheduler

« Management of child scopes - CompletionGroup created automatically

def blocking(body: Async ?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

Async.blocking lets you “suspend” to wait for Futures. It does that... by blocking the thread.

23

Gears: Asynchronous Programming in Direct Style Scala
Writing Gears code

Entry into the async world

How do you get an Async context in the first place?

Components of Async: Ingredients of Async.blocking:

« A suspension mechanism e SuspendSupport ak.a delimited continuation interface
« Capability to resume a computation « A Scheduler

« Management of child scopes - CompletionGroup created automatically

def blocking(body: Async ?=> T)(using AsyncSupport, AsyncSupport.Scheduler)

where default implementations of the interfaces are provided within Gears with
gears.async.default.given. Custom implementations welcome!

Async.blocking lets you “suspend” to wait for Futures. It does that... by blocking the thread.
Usage: part of @main, or during conversion from blocking code!

23

Gears: Asynchronous Programming in Direct Style Scala

Writing Gears code

Target support: Now and beyond

Your project

Support can be Mcremewta“y
bui l‘t onto Gears!

scalanative.runtime.Continuations

Work-stealing scheduler

Epoll-based IO AN

! Single—threaded

Schedulers (libuv)

io-uring

N\
\
N

Scala;js WAsm
AN

Gears
JVI"I/ /
N
Loom virtual threads &
scheduler Scala Native

]

| WASM GC |

] Continuations |
|

24

What's next?

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency

« Loom and Continuations allow a direct-style .await API, making natural
asynchronous code possible

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency

« Loom and Continuations allow a direct-style .await API, making natural
asynchronous code possible

- Viewing Async as a capability lets us use Scala’s unique implicit parameter for a
lean approach to managing concurrent code.

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

A new view of concurrency

« Loom and Continuations allow a direct-style .await API, making natural
asynchronous code possible

- Viewing Async as a capability lets us use Scala’s unique implicit parameter for a
lean approach to managing concurrent code.

 Gears combines both and introduces Structured Concurrency as a guiding
principle for writing concurrent programs.

26

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears

o Gears right now is just base framework!

trait Reader
def read Buffer Async): Int

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears

o Gears right now is just base framework!
e 1O: the source of (most) suspends!
» gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
def read(buf: Buffer)(using Async): Int

Coming soon!

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears

o Gears right now is just base framework!
e 1O: the source of (most) suspends!

» gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
def read(buf: Buffer)(using Async): Int

Coming soon!
« A first “real-use” library: an HTTP client!

27

Gears: Asynchronous Programming in Direct Style Scala
What's next?

Next steps for Gears

o Gears right now is just base framework!
e 1O: the source of (most) suspends!
» gears-io: a cross-platform interface for IO ops. Think fs2, but on gears.

trait Reader:
def read(buf: Buffer)(using Async): Int

Coming soon!
« A first “real-use” library: an HTTP client!
o To flesh out: customizing cancellation models, supervising futures

27

Gears: Asynchronous Programming in Direct Style Scala

What's next?

Thank you!

To learn more about Gears:

@5

https://lampepfl.github.io/gears

Follow its development:

o GitHub: lampepfl/gears

« Me: @natsukagami (GitHub), @nki@dtth.ch (Mastodon)
« Lots of development documented on Gears Website!

Learn more about Direct Style Scala:
« Martin Odersky, “Direct Style Scala”, Scalar 2023
« Adam Warski, Ox: Asynchronous Programming with

Direct Style & Loom

28

https://lampepfl.github.io/gears
https://lampepfl.github.io/gears

Bonus Slides

Gears: Asynchronous Programming in Direct Style Scala
Bonus Slides

Comparison to Ox

« Ox forgoes the concept of suspension.
Loom Virtual threads means blocking == suspending.
» Gears keeps this explicit. Allows explicit tracking of this capability, and allowing
independent implementations from core Scala Native.
« Ox has user, daemon and unsupervised threads.
Gears make a simplification: There are only Futures that:
» Completes with Failure on exception
» Don’t cancel parent scope on failure
» Are cancelled when scope ends
« Ox bakes in Either and Try support for error handling, Gears prefers Try.

30

Gears: Asynchronous Programming in Direct Style Scala
Bonus Slides

What color is your function?

1. Every function has a color. Yes, either you take Async, or you don’t.
2. The way you call a function depends on its color. No!
3. You can only call a red function from within a red function. Yes™.
« Async.blocking exists, but you have to be aware of its limits.
4. Red functions are more painful to call. No...
5. Some core library functions are red. Not yet, but will be, and that’s fine!

Original Article:
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

31

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

	About me
	Previously, in Scalar 2023...
	Async is now Gears
	The ability to wait...
	An Overview of Gears
	A simple example
	Async Contexts
	Almost a blocking API
	Sequential actions stay the same
	Futures: Spawning Concurrent Computations
	Async Scopes
	Structured Concurrency
	Future Composition: In and Out
	Future Composition: Select
	Future Communication: Channels
	Sources: Working with External, Unstructred Events
	Error Handling
	Timeout and Retry
	Entry into the async world
	Target support: Now and beyond
	A new view of concurrency
	Next steps for Gears
	Thank you!
	Comparison to Ox
	What color is your function?

